طرق حل المعادلات الحدودية من الدرجة الأولى و الثانية و الثالثة و الرابعة

يحتوي هذا الموضوع على:

  

في الرياضيات ،المعادلات الحدودية أو معادلات كثير الحدود : هي معادلات تكون على الشكل التالي:

حيث ai, معاملات المعادلة, و الهدف هو إيجاد جميع قيم المجهول x. و نقول أن كثير الحدود من الدرجة الأولى إذا كانت أعلى قوة ل x تظهر في المعادلة هي واحد. وهي من الدرجة الثانية إذا كانت أعلى قوة ل x هي إثنين و هكذا دواليك. إذن نقول أن كثير الحدود من الدرجة n إذا كانت أعلى قوة ل x هي n. و تقول المبرهنة الأساسية في الجبرأن لكل معادلة حدوددية من الدرجة n يوجد عدد n من الحلول (ذلك إذا إحتسبنا الحلول المكررة أي التي يجب أن نعدها مرتين). كما تجدر الإشارة إلى أن كل معادلة حدودية ذات معاملات تنتمي إلى الأعداد الحقيقية إن كان لها حلول تنتمي إلى الأعداد المركبة فإن هذه الحلول تكون دائما مترافقة أي أنه يكون دائما هناك حل في شكل a+ib و آخر في شكل a-ib. أما إذا كانت المعاملات عقدية فإن ذلك ليس صحيحا.

المبرهنة الأساسية في الجبر
إذا إعتبرنا المعادلة التالية:
x2 + 2x + 1 = 0
فإن الحل هو 1- و لكن يتم اعتبار هذا الحل مكررا مرتين لأننا يمكن أن نكتب المعادلة بالشكل التالي:
x2 + 2x + 1 = (x + 1)2 = (x + 1)(x + 1) = 0
و لذلك نرى أنه لتكون المعادلة صحيحة يجب أن يكون القوس الأول يساوي صفرا أو الثاني يساوي صفرا و في كل مرة يعينا ذلك حلا أي أن الحل 1- مكرر مرتين. كذلك إذا إعتبرنا
(x − 1)n = 0
فإن الحل هو 1 و لكنه مكرر n مرة إلخ.... بهذه الطريقة تتم حساب عدد الحلول. و على أساس ذلك يكون كما هو مذكور أعلاه لكل معادلة حدودية من الدرجة n عدد n من الحلول
طرق حل المعادلات الحدودية

المعادلة من الدرجة الأولى

حل المعادلة: هو حيث ونستطيع حل معادلات الدرجة الأولى بكل سهولة فمثلا:- مثال 1:- حل المعادلة التالية س+5=10 الحل:- س+5-5=10-5 وبالإختصار نجد أن:- س=5 بحيث لو عوضنا بقيمة س نحصل على الناتج 10 5+5‏=‏10 وهناك طريقة أخرى وهي نقل الحد الثاني إلى الجهة الأخرى بعكس إشارته. س=10-5 س=5
المعادلة من الدرجة الثانية

لحل المعادلة: , نحسب المميز Δ المعرف ب: , و يكون للمعادلة حلان هما:[LIST][*][*].[/LIST] المعادلة من الدرجة الثالثة

طريقة كاردان

طريقة كاردان هي طريقة تمكن من حل جميع المعادلات من الدرجة الثالثة.
هذه الطريقة تكمن من استعمال صيغ كاردان المعطات بدلالة p و q حلول المعادلة: . و هي تمكن من البرهنة على أن المعادلات من الدرجة 3 يمكن حلها جبريا.
صيغ كاردان

بالنسبة للمعادلة: نحسب , ثم ندرس إشارته.
Δ موجب

نضع[LIST][*][*][/LIST]الحل الوحيد الحقيقي هو .
و حلان عقديان مترافقان :[LIST][*][*][/LIST]حيث
Δ سالب

يوجد عدد عقدي u الذي هو جذر مكعب ل .
المعادلة تقبل ثلاث حلول حقيقية:[LIST][*][*][*][/LIST] تفسير الطريقة

الصيغة المختصرة

نعتبر الصيغة العامة للمعادلة: ,
نضع:

لنحصل على الصيغة:

نضع الآن:
الآن نحصل على مجهولين بدل مجهول واحد, لكن نضع شرطا يمكن من التبسيط:
تتحول هذه المعادلة إلى الشكل:
شرط التبسيط يكون إذن:
الذي يعطي من جهة:
و من جهة أخرى:
و عند رفع العددين إلى القوة 3, نحصل على:
و نحصل أخيرا على نظمة معادلتين لمجهولين u3 و v3 الآتية :


u3 et v3 هما إذن عددين نعرف جمعهما و جذاءهما. هذين العددين هما جذرا المعادلة من الدرجة الثانية:

المعادلة من الدرجة الرابعة

طريقة فيراري

نعتبر الصيغة العامة للمعادلة من الدرجة الرابعة:
نقسم على و نضع

لنصل إلى معادلة على صيغة :

معادلة تكتب:

نضيف

لطرفي المتساوية. فنحصل على:

نلاحظ أن الطرف الأول يكتب على صيغة مربع:

من هاته النتيجة الأخيرة, نقوم بالنشر :


(*)
الهدف هو تحديد y بحيث يكتب الطرف الثاني أيضا على صيغة مربع.
الطرف الثاني معادلة من الدرجة الثانية z. يكتب على شكل مربع . إذا كان المميز منعدما يعني:

الشيء الذي يعطي, عن طريق النشر و التجميع معادلة من الدرجة الثالثة y الآتية :

نستطيع حل هذه المعادلة باستعمال الطريقة الخاصة بمعادلات الدرجة الثالثة لإيجاد y0 .

المعادلة من الدرجة الخامسة فما فوق

مبرهنة آبل هي مبرهنة رياضية تنص على أنه "ليس هناك حلول جبرية انطلاقا من الدرجة الخامسة
"
.بالنسبة للمعادلات من الدرجة الأولى و الثانية و الثالثة و الرابعة, يمكن إيجاد الحلول باستعمال العمليات الأربع الجمع الفرق الضرب القسمة إلى جانب القوى و الجذور. لكن ابتداء من الدرجة الخامسة لا يمكن ايجاد الحلول باستعمال العمليات السابقة.

عن الكاتب: author بسام حسين محمد 25 سنة مهتم بجمع البحوث العلمية وترجمتها وتلخيص وحل كتب المقررات المدرسية والجامعية بشكل دوري ومستمر

تابعني على جوجل بلس |

إشترك ليصلك جديد برامجنا وتطبيقاتنا


10 التعليقات:

  1. *أشكر الباحث المعلم و عنده ما يلبي الأشواق العلمية و الأدبية,و لا يسعني الا أن أتقدم بالشكر للعاملين في خدمة الأجيال القادمة./ Suite arithmetique./ Bonsoir *EL HATMI AHMED

    ردحذف
  2. شكرا لتوضيح بس ياريت توضح بالامثلة

    ردحذف
  3. شكرا لكم مع التقدير العالي

    ردحذف
  4. لا اعتقد انه ليست هناك طريقة

    ردحذف
  5. تم اثبات خطآ مبرهنة آبل وذلك كان من انجازات سنة 2005 وذلك تجدة في موقع الجمعية الفلكية السورية من خلال الرابط http://www.ascssf.org.sy/conf-moussa-science05.htm كل ما اترجاه من المدونين العرب عمل تحديث دوما لمعلوماتهم لان لاشئ ثابت والتغير والتغيير من سنة الله والله ما اريد الا الاصلاح لمجتمعاتنا العربية
    اخيكم الباحث الحر والمبتكر والفنان التشكيلي : حسن حجازي

    ردحذف
  6. ابحث في 1 نيسان في الموقع السابق
    علي العموم المكتوب كالتالي
    معادلات الدرجة السادسة

    هل توجد صيغ لحل معادلات من الدرجة السادسة؟

    منذ أكثر من 3000 سنة كان البابليون يعرفون كيف يحلون معادلة من الدرجة الثانية. أما صيغ حل المعادلات من الدرجتين 3 و 4 فقد وضعها نيكولو تارتغليا Niccolo Tartagalia في القرن السادس عشر. ومنذ ذلك الحين لم يطرأ تقدم جديد. وفي القرن التاسع عشر وجد نيلز آبل Niels Abel معادلة من الدرجة الخامسة لا يمكن حلها بواسطة الجذور. وبعد فترة بسيطة، فسر إيفرست غالوا Evariste Galois بشكل عام لماذا توجد صعوبة في حل معادلات من الدرجة الخامسة فما فوق، الأمر الذي جعل الرياضيين يتوقفون عن البحث عن مثل هذه الصيغ. وفي عام 1991 وضع دافيد دوميت David Dummit قائمة بمعادلات الدرجة الخامسة القابلة للحل بواسطة جذور. واليوم، في هذا التاريخ، توصل العالمان كارول بوزويل Caroll Boswell ولورانس غلاسر Lawrence Glasser إلى النتيجة نفسها بالنسبة لمعادلات الدرجة السادسة. وتذكر الصيغ المعقدة جداً بصيغ معادلات الدرجة الثالثة.

    ردحذف
  7. واول تعرفي علي مبرهنة آبل تلك الكاذبة كانت صدمة لي لاني ببساطة حليت المعادلة الخامسة حل عام بالجذور ولكن وقعت علي هذا الخبر فبحثت عن السبب فوجدته في معادلتي واضحا فثمة معادلات منها سوف تحل واخري لا يمكن لانه ثمة مقام للمعادلة بدلالة المتغيرات فببساطة يمكن ان يصبح هذا المقام يساوي صفرا لبعض المتغيرات وقد يكون تلك الحالات هي التي اقام آبل عليها مبرهنته
    اخيكم حسن حجازي

    ردحذف